PrismaTech® Coriolis Mass Flowmeter

INSTRUCTION MANUAL

راهنمای کاربری فلومتر کوریولیس پریسماتک

CORIOLIS MASS FLOWMETERS:

PrismaTech® Instruments www.ControlSystemco.com Jul, 2023

که هشدار:

مایعات موجود در خط ممکن است داغ یا خطرناک باشند. در زمان نصب یا تماس با مایع از محافظ و لباسهای محافظتی استفاده کنید. تنها به تماس پیدا نکردن با محلولها اکتفا نکنید.

اقدامات احتیاطی هنگام جدا کردن سنسور از روی خط تولید:

🔬 كاملاً مطمئن شويد كه مسير جريان محلول تحت فشار نيست.

- 🗢 شیر تخلیه را باز کنید.
- با احتیاط کامل پیچ مربوط به کلمپهای سنسور را کمی شل کنید و آماده باشید که در صورت نیاز باز هم آن را سفت کنید.
 از مسیر هرگونه نشتی یا خروج مایع فاصله بگیرید.

این دفترچهٔ راهنما همراه با فلومترهای کوریولیس **پریسماتک،** به خریدار تحویل داده میشود.

در صورت هرگونه تغییر در محتویات این دفترچه، نسخهٔ جدید آن در سایت اینترنتی شرکت کنترل سیستم خاورمیانه به نشانی <u>www.controlsystemco.com</u> قابل دریافت است.

گارانتی:

شرکت کنترل سیستم خاورمیانه تضمین میکند که فلومتر الکترومغناطیسی **پریسماتک** از نظر قطعات به کاررفته و همچنین عملکرد آنها عاری از هرگونه نقص باشند. این شرکت متقبل میشود که در صورت نیاز، بدون هیچگونه هزینهای اقدام به تعمیر یا تعویض سیستم نماید.

- 🗢 🛛 هرگونه نقصی باید حداکثر یک سال پس از خریداری دستگاه به شرکت اطلاع داده شود.
- 🔹 در صورتی که سنسور باز شده باشد و یا هرکدام از بخشها دستکاری شده باشند گارانتی لغو میگردد.

لطفاً قبل از ارسال موارد دارای نقص برای سرویس یا تعویض جهت آگاهی از نحوهٔ بستهبندی و ارسال محصول، با شرکت تماس حاصل فرمایید. (<u>/http://www.controlsystemco.com</u>)

	فهرست مطالب
۱	۱ علائم و هشدار ها
۱	۱٫۱ علائم کلی هشدار
۱	۱٫۲ علائم الکتریکی
۲	۱٫۳ علائم استفاده شده جهت راهنمایی
٣	۲ معرفی
٤	۲٫۱ اصول کارکرد فلومتر های کوریولیس
0	۲٫۲ بخشهای مختلف
٦	۲,۲,۱ سنسور
٦	۲٫۲٫۲ ترنسمیتر و نمایشگر
٧	۲٫۳
٨	۲٫٤ مشخصات مکانیکی
٨	۲٫٥ مشخصات ترنسمیتر
٨	۲٫۵٫۱ تغذیه
٩	۲٫۵٫۲ واحدهای اندازهگیری
٩	Totalizer۲٫۵٫۳ ها
۱	۲٫٦ مدلهای مختلف
۱	۲٫۷ ليبل مشخصات سنسور
۱	۲٫۸ پلاک مشخصات ترنسمیتر
۱	۲٫۹ بورد ترمینال
۱	۳ نصب و راهاندازی ۲
۱	۲,۱ تنظیم نمایشگر متناسب با نحوهٔ نصب سنسور
۱	۳,۲ تنظیم Terminals Body متناسب با نحوهٔ نصب سنسور۳
۱	۲٫۳ قطعات مورد استفاده در نصب سنسور
۱	۲,٤ جهت ورودي و خروجي سيال٤
۱	٥,٥ انتخاب سایز فلومتر ٥
۱	۳,٥,۱ محدودهٔ دبی قابل انداز مگیری
۱	۳٫۳ شرایط و محل مناسب برای نصب سنسور (مطابق با استاندارد DIN/EN 29104)
۱	۳٫٦٫۱ فاصله از محلهای پر تلاطم
۱	۳٫٦٫۲ نصب سنسور قبل از شیر
۱	۳,٦,٣ خروجي پمپ
۱	۳,٦,٤ لولههای نیمه پر
۱	۳٫٦٫٥ لوله های به سمت پایین
۲	۳,٦,٦ جهتگیری های مختلف نصب سنسور
۲	۳,٦,٧ نكات تكميلي در نصب سنسور
۲	۲ راهنمای استفاده و کاربری
۲	٤,١ کلیدها و چراغهای نشانگر

۲٤	٤,٢ شمای کلی تنظیمات دستگاه
۲٥	٤,٣ سريرگ Main يا صفحهٔ اصلی نمايش
۲٦	٤,٤ سریرگ Setting
۲٦	ە,٤ سرىرگ Diagnostics
۲۷	٤,٦ سربرگ Menu
۲۸	٤,٦,١ تنظیمات نمایشگر(دبی) Flow Display Setting
۲۹De	nsity & Brix Display Setting (دانسیته و بریکس) د نظیمات نمایشگر (دانسیته و بریکس)
۳	٤,٦,٣ دیگر تنظیمات نمایشگر Other Display Setting
۳۱	٤,٦,٤ تنظيمات خروجي هاي آنالوگ Analog Outputs Setting
۳۲	۶٫٦٫٥ تنظيمات خروجي هاي ديجيتال Digital Outputs Setting
۳۳М	۵dbus & Digital Inputs Setting تنظیمات مدباس و ورودی دیجیتال
٣٤	٤,٦,٧ تنظيمات دما Temperature Setting
۳٥	٤,٦,٨ تنظيمات توتالايزرها Totalizers Setting
۳٦	٤,٦,٩ تنظيمات كنترلر PID
۳۷	٤,٦,١٠ تنظيمات حالت پرکن Batch Filling Setting
۳۸	د المنافري کاليبر اسيون Calibration & EPD Setting
۳۹	٤,٦,١٢ منوى تنظيمات كارخانه Factory Setting
٤١	• سرویس و نگهداری
٤٣	۲ پیوست A: آدرس پارامتر های ارتباط سریال RS485 Modbus RTU
וד	۷ پیوست B: تنظیم کنترلر های PID
וד	۷٫۱ تئوری PID
וד	۷٫۲ اثر عملیات کنتر لی انتگر الی و مشتقی بر عملکرد سیستم
יז	۷,۲,۱ عمل کنترل انتگر الی
וד	۷,۲,۲ عمل کنترل مشتقی
۲۲	۷٫۲٫۳ عمل کنترل تناسبی- انتگرالی – مشتقی
זד	۷٫۳ روشهای نتظیم کنترلر PID
זד	۷٫۳٫۱ روش آزمایش-خطا
٦٣	۷,۳,۲ روش اول زیگلر-نیکولز
٦٤	۷,۳,۳ روش دوم زیگلر-نیکولز

۱ علائم و هشدارها

۱٫۱ علائم کلی هشدار

علائم شرح

خط: این هشدار نشاندهندهٔ خطر فوری ایجاد سوختگی با برق میباشد.

خطر: این هشدار نشاندهندهٔ خطر فوری ایجاد سوختگی با گرما یا سطوح داغ میباشد.

خط: این خطر میبایست با دقت مورد توجه قرار گیرد، به طوری که حتی عدم توجه به صورت جزئی نسبت به این خطر ممکن است باعث ایجاد مشکلات سلامت و یا مرگ شود. همچنین احتمال بروز خسارت جدی در تاسیسات و خط تولید استفاده کننده نیز وجود دارد.

۱٫۲ علائم الکتریکی

علائم شرح

- جریان مستقیم ----ترمینالی که میبایست جریان مستقیم به آن متصل شود و یا از آن جریان مستقیم گرفته می شود.
- جیان متناوب
 ترمینالی که می ایست جریان متناوب به آن متصل شود و یا از آن جریان متناوب گرفته می شود.

جريان مستقيم و جريان متناوب ترمینالی که میبایست جریان مستقیم یا متناوب به آن متصل شود. ترمینالی که از آن جریان مستقیم یا جریان متناوب گرفته می شود.

 \sim

کانکشن اتصال به زمین یک ترمینال Grounding شده که می بایست به یک سیستم Grounding

ď

کانکشن حفاظتی Ground

یک ترمینال که میبایست قبل از اتصال هر کانکشن دیگری به Ground متصل شود.

۲ معرفی

فلومترهای کوریولیس را میتوان از نوع فلومترهای استاندارد و چند متغیره برای مایعات و گازها نام برد که امکان ثبت همزمان چندین متغیر(جرم/ چگالی/ دما) برای شرایط مختلف فرایند در طول عملیات اندازه گیری را فراهم میکند. اصل اندازه گیری فلومتر کوریولیس مستقل از خواص فیزیکی سیال مانند ویسکوزیته و چگالی است که دارای دقت اندازه گیری بسیار بالا میباشد.کاربردهای اصلی فلومتر کوریولیس را میتوان در اندازه گیری موارد زیر بیان کرد.

گازهای مایع و فشرده	•	روغن ها	•
حلال ها	•	روان کننده ها	•
مواد غذایی	•	سوخت ها	•

فلومترهای کوریولیس **پریسماتک** در کاربردهای ذکر شده و با ویژگیهای زیر طراحی و ساخته شدهاند:

- نصب آسان
- کاربری آسان
- نگھداری آسان
- عملكرد عالى به دليل كاليبراسيون با دقت بالا
- عدم حساسیت به ارتعاشات به لطف سیستم نیروهای خارجی Piping

اندازه گیری دو لوله ای متعادل

 مصونیت در مقابل به دلیل طراحی مقاوم

۲٫۱ اصول کارکرد فلومترهای کوریولیس

در این روش اندازه گیری بر اساس قانون کوریولیس انجام میشود.

کوریولیسها معمولا از دو لولهی مرتعش تشکیل یافتهاند. به طورکلی در همه انواع این دبیسنجها سیال از داخل لولههای مرتعش عبور می کند. لولهها در فرکانس طبیعی خود و توسط نوسان سازهای الکترونیکی متصل به لولهها ارتعاش می یابند. یکسری سیم پیچ برای آشکارسازی نوسانهای کوچک یا Micro motion لولهها به یکی از لولهها و یکسری آهنربا به لوله مجاور متصل می باشند که با نوسان لولهها، در هر سیم پیچ به دلیل تغییر میدان مغناطیسی حاصل از آهنربای مجاور، یک ولتاژ نوسانی القا میشود.

هنگامی که در ورودی فلومتر، سیال به سمت نقطهای که دارای ارتعاش است حرکت می کند، لوله به آن شتاب یا نیرو اعمال می کند. سیال متحرک برای مقاومت در مقابل نیرویی که توسط لوله اعمال می شود، نیرویی به لوله وارد می کند. همین نیرو نیز در سمت خروجی لوله و در جهت عکس به وجود خواهد آمد. برهم کنش این دو نیرو در ورودی و خروجی لولهها، باعث پیچش لوله می شود. این نیرو متناسب با جرم سیال عبوری از لوله هاست و نیروی کوریولیس نام دارد و سبب اختلاف فاز ولتاژ القایی در دو سیم پیچ که در طرفین لوله ها است میشود. از این رو اختلاف فاز یا تاخیر زمانی بین موج ورودی و خروجی مستقیماً با دبی جرمی سیال متناسب است.

$Fc=2 \star \Delta m(v \star \omega)$	
نیروی کوریولیس=Fc	سرعت شعاعی در سیستم چرخشی یا نوسانی =V
Δm =جرم متحر ک	سرعت چرخش = ۵

دامنه نیروی کوریولیس به جرم متحرک Δm ،سرعت V در سیستم و در نتیجه به جریان جرم بستگی دارد.به جای سرعت زاویه ای ثابت ω حسگر از نوسان استفاده میکند.

- در جریان صفر،وقتی سیال در حالت سکون است.دو لوله در فاز1 (شکل 1)نوسان میکنند.
- جریان جرمی باعث کاهش نوسان در ورودی لوله ها (شکل 2) و شتاب در خروجی ها (شکل 3) میشود.

اختلاف فاز (AB) با افزایش جریان جرمی افزایش میابد.سنسورهای الکترودینامیکی نوسانات لوله را در ورودی و خروجی ثبت می کنند.

اصل اندازه گیری مستقل از دما، فشار، ویسکوزیته، هدایت و مشخصات جریان عمل میکند.

اندازه گیری چگالی؛ لوله های اندازه گیری به طور مداوم در فرکانس تشدید خود تحریک میشوند.تغییر در جرم و در نتیجه چگالی سیستم نوسانی(شامل لوله های اندازه گیری و سیال) منجر به تنظیم خودکار فرکانس نوسان میشود. بنابراین فرکانس تشدید تابعی از چگالی سیال است.cpu از این رابطه برای بدست آوردن مقدار چگالی میکند.

اندازه گیری دما؛ دمای لوله های اندازه گیری به منظور محاسبه ضریب جبران ناشی از اثرات دما تعیین میشود.این مقدار با دمای سیال مطابقت دارد و به عنوان خروجی نیز در دسترس میباشد.

۲٫۲ بخشهای مختلف

Disploy Body Terminel Body Terminel Body Terminel Body Terminel Body Terminel Body Terminel Body Cable Glande (PG1)

فلومتر کوریولیس **پریسماتک** شامل یک واحد سنسور و یک واحد ترنسمیتر می اشد:

شکل 2-2 بخشهای مختلف فلومترهای کوریولیس پریسماتک مدل PTMass

معرفى

۲,۲,۱ سنسور

این بخش ارتعاشات لوله را اندازه گیری و به سیگنال الکتریکی تبدیل میکند. سنسور از دو لوله با جنس استیل، 3 عدد سیم پیچ (کویل با هسته مغناطیسی)، 2 عدد سنسور دما، بدنهٔ اصلی و کانکشنهای اتصال تشکیل شده است.

۲,۲,۲ ترنسمیتر و نمایشگر

این بخش با انجام محاسبات مختلف سیگنال الکتریکی دریافتی از سنسور را به فلوی جرمی و حجمی و چگالی سیال تبدیل میکند. همچنین علاوه بر نمایش مقادیر اندازه گیری شده خروجیهای لازم را جهت ارسال به تجهیزات دیگر در اختیار کاربر قرار میدهد.

۲٫۳ ابعاد

ابعاد و مشخصات فیزیکی فلومترهای کوریولیس پریسماتک با کانکشن نصب 3A Clamp در SA Clamp در source not found. آورده شده است.

۲,٤ مشخصات مکانیکی

F	uid Temperature Range	-20°C~ 120°C	
	Ambient Temperature	-20°C~ 70°C	
Γ	Maximum Fluid Pressure	30 Bar	
Mounting Connection		3A Clamp, Flange, Nut,	
Protection		IP68 For sensor unit and IP67 for transmitter unit	
_	Electrodes	Titanium, Hastelloy (On Request)	
eria	Sensor Wetted Parts	AISI 316L Stainless Steel	
/ at	Sensor Body	AISI 304 Stainless Steel	
2	Transmitter Body	Anodized Aluminum	

^{ه, ۲} مشخصات ترنسمیتر

Power	22~26 Vdc / 100-240 Vac, 500mA				
Display	128*64 pixel LCD STN Display				
Measurment	Massflow gr/Min, gr/Sec, Kg/Hour, Kg/Min, Kg/Sec, Ton/Hour, ton/Min				
Units		with changeable dot points.			
	Density	gr/cm3, kg/cm3, gr/m3, gr/mL, gr/L, kg/L, kg/m3 with			
		changeable dot points.			
	Volumeflow	m ³ /h, m ³ /s, L/h, L/min, L/s, mL/min, mL/s with changeable dot			
		points.			
	Concentration	n Brix, Refractive Index(nD) with changeable dot points.			
Cable Glands	Two PG11 Glands				
Accuracy	Massflow: ±0.15 % Brix: ±0.1 % Volume: ±0.15 % Density: ±1 kg/m3				
Analog Outputs	Two unit 4~20mA (max 1Kohm)				
Digital Outputs	Two selectable units (Pulse/ Frequency/ Alarm)				
Digital Inputs	One units (Hold/Totalizer Reset/PID & Batch Filling Enable)				
Totalizer	2 independent totalizers with selectable units for Massflow & Vol. Flow				
Alarms	Empty Pipe, AQ Open Loop, etc.				

۲٫۵٫۱ تغذیه

از یک منبع تغذیهٔ سوئیچینگ جریان مستقیم با ولتاژ 240 Vac / 100-240 می 22~22 برای تغذیهٔ دستگاه استفاده می شود و حداقل جریان مورد نیاز برای کار دستگاه معادل 500mA می باشد.

۲٫۰٫۲ واحدهای اندازه گیری

فلومتر کوریولیس پریسماتک قادر است مقدار فلوی جرمی اندازه گیری شده را در واحدهای ,gr/Min, gr/Sec ml/Min, و فلوی حجمی اندازه گیری شده را در واحد های ,Kg/Hour, Kg/Min, Kg/Sec, Ton/Hour, ton/Min و فلوی حجمی اندازه گیری شده را در واحد های با چارت ml/Sec, Liter/Hour, Liter/Min, Liter/Sec, m3/Hour, m3/Min Flow Display Setting نمای استفاده از زیر منوی Flow Display Setting در بخش واحد و همچنین تعداد رقم اعشار مورد نظر خود را انتخاب نماید. (زیر منوی Flow Display Setting در بخش 4.6.14.6.1

Totalizer ۲,۰,۳

فلومتر کوریولیس **پریسماتک** دارای دو واحد Totalizer داخلی میباشد که از آنها جهت اندازه گیری مجموع حجم یا جرم عبوری از خط لوله استفاده میشود. با استفاده از ورودیهای دیجیتال و یا تنظیمات موجود در نمایشگر دستگاه می وان مقدار هر Totalizer را صفر(Reset) کرد. (بخش 4.6.8)

۲٫۶ مدلهای مختلف

شکل**2-3** مدل های مختلف فلومتر های کوریولیس را مطابق با لیبل مشخصات درج شده بر روی سنسور دستگاه نمایش می

۲٫۸ پلاک مشخصات ترنسمیتر

۲٫۹ بورد ترمینال

در شکل 6-2 محل ترمینالهای ورودی و خروجی بر روی بورد واحد ترنسمیتر نمایش داده شده است. همانطور که دیده میشود نام هر کدام از ترمینالها در کنار آن چاپ شده است که میبایست در زمان اتصال سیم به آنها توجه نمایید.

*خاموش بودن یا چشمک زدن نامنظم چراغ Micorcontroller Status LED نشاندهندهٔ وجود اشکال در عملکرد میکروکنترلر میباشد. در این صورت با واحد پشتیبانی و خدمات پس از فروش **پریسماتک** تماس حاصل فرمایید.

۳ نصب و راداندازی

۳٫۱ تنظیم نمایشگر متناسب با نحوهٔ نصب سنسور

با توجه به نحوهٔ نصب فلومتر و عمودی یا افقی بودن لولهای که روی آن نصب میشود نمایشگر دستگاه قابلیت چرخش دارد. برای انجام این کار ابتدا میبایست با استفاده از یک آچار آلن سایز 3 چهار عدد پیچ نشان داده شده در شکل *1 3* **را** باز نموده و پس از چرخاندن نمایشگر به اندازهٔ 90 درجه در جهت مثبت یا منفی، مجدد پیچهای نمایشگر را محکم نمایید.

پس از تغییر جهت نمایشگر دقت نمایید پیچها را به درستی محکم نمایید در غیر این صورت ممکن است رطوبت
 به داخل ترنسمیتر دستگاه نفوذ کرده و باعث آسیب رساندن به مدارات الکترونیکی دستگاه شود.

۳٫۲ تنظیم Terminals Body متناسب با نحوهٔ نصب سنسور

همواره می بایست جهت بدنهٔ ترمینالهای دستگاه طوری باشد که کابلهای خروجی از آن به سمت پایین باشد. با این کار در صورت شل بسته شدن گلندها از نشت احتمالی مایعات به داخل ترنسمیتر جلوگیری می شود. برای تنظیم مناسب جهت گلندها می بایست مطابق شکل 3-3 چهار عدد پیچ مربوطه را باز نموده و بدنهٔ گلند را به میزان 90 درجه در جهت مثبت یا منفی چرخانده و سپس مجدداً پیچها را محکم ببندید.

۳٫۳ قطعات مورد استفاده در نصب سنسور

شکل **3-3** قطعات مورد استفاده در نصب دستگاه را نمایش میدهد. سنسور دستگاه توسط یک کلمپ و گسکت آن به فرول (Ferrule) جوش داده شده بر روی خط لوله مورد نظر نصب می گردد.

🛈 جوشکاری فرول بر روی خط حتماً میبایست با استفاده از جوش آرگون و به صورت نفوذی انجام شود.

۳,٤ جهت ورودی و خروجی سیال

هنگاه نصب دستگاه به لیبل نصب شده بر روی بدنه دستگاه توجه نمایید. اطمینان حاصل کنید که جهت فلش روی لیبل سنسور با جهت جریان(جهت جریان سیال داخل لوله) مطابقت دارد.

Coriolis Mass Flowmeter	ip67 CE
Model: PTMas 40–S–02–16–24 S/N: 123125004 Manufactured on: 2023/06	P Max: 16bar T Max: 150°C V Input: 22-26VDC
* Flow Di	rection
Sensor Body Material: AISI304L Tube Material: AISI316L	www.ControlSystemco.com

شکل 4-3 لیبل بدنه دستگاه

۳٫۵ انتخاب سایز فلومتر

به طور کلی قطر لوله به همراه محدودهٔ سرعت جریان سیال سایز اسمی سنسور را مشخص مینماید با این وجود میتوان گفت که در خیلی از مواقع سایز فلومتر برابر با قطر لوله انتخاب میشود در عین حال گاهی اوقات نیز جهت افزایش سرعت سیال و جلوگیری از تشکیل رسوب قطر سنسور کمتر انتخاب میشود.

سرعت بهینه برای اندازه گیری فلو بین 2m/s تا 3m/s میباشد علاوه بر این سرعت جریان سیال میبایست با خصوصیات فیزیکی سیال نیز هماهنگ باشد:

- سرعت کمتر از 2 متر بر ثانیه (V<2m/s) در مایعات ساینده مثل دوغاب خاک رس، دوغاب آهک، دوغاب سنگ ریزه معادن و... مناسب است.
- سرعت بیش از 2 متر بر ثانیه (V>2m/s) در مایعاتی که باعث رسوب گذاری در لوله می گردند مانند مایعات چسبنده، فاضلاب، آبهای گل آلود و… مناسب میباشد.
 - 🗢 سرعت جریان را میتوان با کاهش قطر لوله افزایش داد.

۹٫۵٫۱ محدودهٔ دبی قابل اندازهگیری

در انتخاب سایز فلومتر میبایست محدودهٔ قابل اندازه گیری دبی توسط دستگاه نیز در نظر گرفته شود. جدول زیر محدودهٔ دبی قابل اندازه گیری توسط فلومترهای کوریولیس **پریسما تک** را نمایش میدهد:

Size		Minimum Flow Pato	Maximum Flow Pato	l Init	
DN (mm)	Inch			Onit	
08	1/4	0	2000	Kg/h	
15	1/2	159	6500	Kg/h	
25	1	441	18000	Kg/h	
38	11/2	1.1	45000	Kg/h	
51	2	1.7	70000	Kg/h	

در هنگام نصب انتخاب مدل حتماً به این نکته توجه نمایید که در مکانیزم اندازه گیری فلومترهای کوریولیس به گونه ای است که بیشترین دقت را در نزدیکی حداکثر دبی اسمی خود دارند لذا حتی الامکان فلومترهای با سایز کوچکتر را انتخاب نمایید. ۳٫^۳ شرایط و محل مناسب برای نصب سنسور (مطابق با استاندارد DIN/EN 29104) در محل نصب سنسور لوله همواره باید پر باشد و حباب درون لوله تشکیل نشده باشد. تشکیل حبابهای گاز یا هوا درون لوله موجب کاهش دقت اندازه گیری می گردد.

- حباب ها در بالای لوله قرار می گیرند بنابراین از نصب فلومتر در بالای لوله و یا در محلی که عبور سیال به صورت
 ریزشی به سمت پایین است خودداری نمایید.
-) بالاترین نقطه در یک خط لوله ریسک تجمع حباب هوا را افزایش میدهد لذا از نصب سنسور در این مناطق خودداری نمایید.
 -) بهترین محل نصب سنسور دستگاه بر روی لولههای عمودی با جهت جریان سیال رو به بالا میباشد.

۳٫٦٫۱ فاصله از محلهای پر تلاطم

تا حد امکان سعی کنید فلومتر را با فاصله از محل ایجاد تلاطم و اغتشاش مانند پمپ، اوریفیس، زانوها، اتصالات شیرها، سه راهی و... نصب نمایید.

ا همانطور که در شکل دیده می شود فاصلهٔ زانو، سه راهی و... حداقل می بایست از سنسور 2 برابر قطر لوله و در صورت صورتی که سنسور بعد از این مکانها نصب می شود می بایست 5 برابر قطر لوله از آن فاصله داشته باشد. در صورت امکان سنسور را در فاصلهٔ بیشتری از این محل ها نصب نمایید تا دقت و ثبات اندازه گیری افزایش یابد.

۳,٦,۲ نصب سنسور قبل از شیر

در صورت وجود شير سنسور دستگاه مىبايست قبل از شير و در فاصلهٔ ايدآل (حداقل 5 برابر قطر لوله) نصب گردد.

۳,٦,۳ خروجی پمپ

از نصب سنسور در ورودی پمپ خودداری نمایید این مسئله به خاطر جلوگیری از نصب سنسور در مناطق کم فشار و در نتیجه از بین رفتن ریسک آسیبدیدگی لاینینگ داخلی سنسور به دلیل افت فشار میباشد.

۲٫٦٫۴ لولههای نیمه پر

از نصب سنسور در قسمتهایی از لوله که ممکن است کاملا پر نباشد خودداری نمایید. همچنین سنسور را در پایین ترین نقطه از یک مسیر تخلیه نصب نکنید زیرا در این نقاط احتمال تجمع ذرات جامد بیشتر است.

۳٫٦٫۵ لوله های به سمت پایین

در صورتی که سنسور را در محلی نصب می کنید که در پایین دست آن جریان به سمت پایین در حرکت خواهد بود(h>5m) یک سیفون و با شیر تخلیه هوا قبل از لولهٔ عمودی ایجاد نمایید. این کار به این دلیل انجام می شود که ریسک فشار پایید و آسیب دیدگی لاینینگ داخلی سنسور از بین برود. این کار همچنین از ایجاد حفر مهای هوا در محل نصب سنسور جلوگیری می نماید.

۳٫٦٫٦ جهتگیریهای مختلف نصب سنسور

یک روش بهینه برای نصب سنسور فلومتر باعث جلوگیری از تجمع گاز، حبابهای هوا و ذرات دیگر در محل نصب سنسور میشود. به طور کلی میتوان به دو روش برای نصب فلومترهای الکترومغناطیسی اشاره نمود: روش افقی و روش عمودی.

- ۳٫٦٫۷ نکات تکمیلی در نصب سنسور
- ۱- محل نصب سنسور طوری باید انتخاب شود که لرزش نداشته باشد. لذا در صورتی که در خط لوله لرزش شدیدی وجود دارد حتما می بایست این لرزش مهار شود.
 - ۲- سنسور را در مناطق دور از میدان مغناطیسی مانند کابلهای برق فشار قوی و متوسط نصب نمایید.

- ۳- در خطوط لولهای که بیش از 5 متر اختلاف سطح وجود دارد می ایست یک شیر تخلیه هوا پس از فلومتر و در بالاترین نقطه نصب شود.
- ^ع- هر دو لوله اندازه گیری داخل بدنه سنسور منحنی هستند. بنابراین هنگامی که سنسور به صورت افقی نصب میگردد، موقعیت سنسور باید با ویژگی های سیال مطابقت داشته باشد.

- شكل 1 براى سيال با مواد جامد مناسب نيست زيرا احتمال تجمع مواد در قسمت پايين لوله وجود دارد.
 - شكل 2 براى خروج مايعات مناسب نيست زيرا احتمال تجمع هوا وجود دارد.
 - ۰- دستگاه را در مکانی دور از نور خورشید و ترجیحا در سایه نصب کنید.

^۲ راهنمای استفاده و کاربری

مطابق شکل **1-4** در صفحهٔ اصلی دستگاه شدت دبی جرمی سیال، دانسیته، دبی حجمی، بریکس و دما همراه با مقادیر Totalizerها نمایش داده میشود همچنین کاربر میتواند با استفاده از کلیدهای لمسی و منوهای دستگاه تنظیمات مورد نظر خود را انجام دهد.

		Fault Status	Pwr ●	
Prisma	aTech®	Flowmeter		
Mass Flow:	(gr/Min)			
	10.0		(+)	
Density: 10.0 Vol. Flow: 10.0	Brix: 10.0 Temp: 10) 1.0		
Totalizer1(M): Totalizer2(M):	10.0 10.0	gr gr		
1 12 O1 O2	A1: 10.0 mA	A2:10.0 mA		
Alarm: Normal (Operation			
Serial No= 520001	DSW Ver= 1.04	MSW Ver= 3.02		
Back	ک و و منحه نمایشگر بدها و صفحه نمایشگر	Enter بع		

⁴, ⁴ کلیدها و چراغهای نشانگر

در کنار و پایین صفحهٔ نمایشگر چهار کلید قرار دارد که از آنها برای اعمال تغییر و کار با منوهای دستگاه استفاده می شود همچنین چراغهای بالای صفحه نمایش دستگاه جهت مشخص کردن وضعیت عملکرد دستگاه و خطایابی آن مورد استفاده قرار می گیرد. در زیر شرح مختصری از عملکرد هر کدام از این کلیدها و چراغهای نشانگر آورده شده است.

نشانگر وصل بودن تغذیه و روشن بودن دستگاه	Pwr	تایید، ورود به منوی مورد نظر	Enter
خطا در هریک از بخشهای دستگاه	Fault	برگشت به قبل	Back →
ارتباط از طريق Wifi	Status	افزایش مقادیر، رفتن به منوی بالایی	
		کاهش مقادیر، رفتن به منوی پایینی	Ţ

در صفحهٔ اصلی با لمس کلید 💬 وارد تنظیمات دستگاه میشوید. سپس با استفاده از کلیدهای جهتدار 🏠 و 👽

آن نیز نمایش داده می شود. در هر سربرگ با استفاده از کلید 🐨 می توانید به منوهای آن دسترسی پیدا کنید و با استفاده از کلید 😅 به منوی اصلی برگردید و با کلیدهای جهتدار بین منوها حرکت کنید و در صورت نیاز مقادیر پارامترها را تغییر دهید.

^۲, ^۲ شمای کلی تنظیمات دستگاه

در جدول زیر نحوهٔ دسترسی به تنظیمات مختلف دستگاه از طریق زیر منوهای مختلف قابل مشاهده است.

Prisma [®]	Tech [®] PTMag flowr	neters parameters diagra	ım
1- Main	2- Setting	3- Diagnostics	4- Menu
	1-Totalizer 1 Reset	1-Status	1- Flow Display Setting
	2-Totalizer 2 Reset	2-P1-2-SP-L	2- Density & Brix Disp. Setting
	3-Totalizer1Limit	3- Freq	3- Other Display Setting
	4-Totalizer 2 Limit	4-PPDT	4- Analog Output 1 Setting
	5-PID Setpoint	5-Tt	5- Analog Output 2 Setting
	6-Filling Setpoint	6- APC	6- Digital Outputs 1 Setting
	7- Home Main Value	7-IIR	7- Digital Outputs 2 Setting
			8- Modbus & Dig. Input Setting
			9- Temperature Setting
			10- Totalizer Setting
			11- PID Controller Setting
			12- Batch Filling Setting
			13- Calibration & EPD Setting
			14- Factory Setting

۴٫۳ سربرگ Main یا صفحهٔ اصلی نمایش

در سربرگ Main مقدار فلوی اندازه گیری شده و همچنین وضعیت ورودیها و خروجیها قابل مشاهده میباشد.

Mass Flow:(gr/Min)						
10.0			0.0			
		Density: 10.0 Vol. Flow: 10.0	Brix: 10.0 Temp: 10.0			
		Totalizer1(M): 10 Totalizer2(M): 10).0 gr).0 gr			
		11 12 O1 O2 A1: 1	0.0 mA A2: 10.0 mA			
		Alarm: Normal Operation	on			
		Serial No= 520001 DSW V	er= 1.04 MSW Ver= 3.02			
		صلی نمایشگر دستگاه	شكل 2-4- صفحهٔ ا			
	Mas	ss Flow	حال عبور	مقدار دبی جرمی سیال در		
De	nsity	مقدار دانسیته سیال در حال عبور	Vol. Flow	مقدار دبی حجمی سیال در حال عبور		
E	Brix	مقدار بریکس سیال در حال عبور	Temp	مقدار دمای سیال در حال عبور		
Tota	alizer1	مقدار توتالايزر 1	Totalizer2	مقدار توتالايزر 2		
DI1	DO1	نشانگر روشن/ خاموش بودن	Analog Output 2	مقدار فعلی خروجی آنالوگ 2		
DI2	DO2	ورودیها و خروجیهای دیجیتال	Analog Output 1	مقدار فعلى خروجي آنالوگ 1		
AI	arm	هشدارهای دستگاه	Serial No	شماره سریال دستگاه		
DSW Ver		ورژن سخت افزار دستگاه	MSW Ver	ورژن نرم افزاردستگاه		

۶٫۶ سربرگ Setting

در سربرگ دوم میتوان به تنظیمات اصلی دستگاه دسترسی پیدا کرد.

A	1		2- Setting	l	3	4
Ð	Parameter		Range		Descript	ion
1-Total1	Reset	Cancel				La Totalizer
2-Total	2 Reset	Reset				صفر فردن المعاماتها
3-Totali	zer 1 Limit	0,0000		يجيتال	جهت فعال شدن خروجی های د	حد Totalizerها بر حسب لیتر ·
4-Totali	izer 2 Limit	0~99999	1999.9	Res شدن (بخشهای یا 4.6.6)		یا Reset شدن (بخشهای یا 6
5-PID Se	etpoint	0~99999	9.9		ليتر بر ساعت	SetPoint کنترلر PID بر حسب
6-Filling	Setpoint	0~99999	99.9		متم پرکن بر حسب میلی لیتر	SetPoint جهت استفاده در سیس
		0 = Mass	Flow			
7-Home	Main Value	1 = Densit	у	* =		
7-1101116		2 = Brix o	r nD	ر اصلی جهت نمایس در صفحه دستنه		النكاب پارامىر اصلى جهك تمايس
		3 = Volun	netric Flow			

* در صورت انتخاب هر کدام از این پارامترها، آن پارامتر در صفحه اصلی دستگاه به عنوان مقدار اصلی نمایش داده میشود.

ه, ٤ سربرگ Diagnostics

در سربرگ سوم پارامترهای عملکردی دستگاه جهت عیبیابی و بررسی عملکرد آن نمایش داده میشود.

A	1		2		3- Diagnos	tics	4	
Ð	Parameter	No	ominal Range			Descrip	otion	
			0 = Swp					
1 Status			1 = Boost					
1-Status			2 = Adj				وطعيف به رزوفنس رسينان	
			3 = Stb					
2-P1-2-S	SP-L			بردار	ولتاژ کویل های نمونه بردار			
3- Freq			فركانس رزونانس	Sto	dDiv	ن	انحراف از معيار فركانس رزونانس	
4-PPDT	-	ونه بردار	اختلاف فاز کویل های نه	Sto	dDiv		انحراف از معيار اختلاف فاز	
6-Tt, Tb	, Tbt, TC				لوله، دمای Cpu	دمای بدنه و	دمای لوله، دمای بدنه، اختلاف	
7- APC,	Ps, WF, AF	بوا	انس آب، فرکانس رزونانس ه	ل رزونا	فاز کویل ها، فرکانس	ريب اصلاح	وضعيت كنترلر اتوماتيك فاز، ض	
8-IIR, B	W, Hour				فیلتر، ساعت کارکرد	پهنای باند	وضعيت فيلتر ميان گذر، تعيين	
9-Dp, F(G, FT		ان دمپینگ ADC	تت زم	پایین گذر ADC، مد	ىريب فيلتر	تعداد سیکل دمپینگ ADC، ض	
A-SS, SO	G, SA						تنظيمات Sweep	

۴٫۹ سربرگ Menu

برای ورود به سربرگ چهارم میبایست پسورد ورود به آن را وارد نمایید که به صورت پیش فرض "4000" میباشد. در بخش 4.6.1 پارامتر Change Password -5-5 میتوان پسورد پیشفرض را به دلخواه تغییر داد.

A	1	2		3		4	
Ð				4- Menu			
1 Elow Dir	1 Eleve Disales Cetting		تنظیمات نمایشگر(دبی حجمی		ensity & Brix Display	تنظیمات نمایشگر(بریکس و	
1- Tiow Display Setting			و جرمی)	Setting		دانسیته)	
3- Other D	Display Setting	ئىگر	دیگر تنظیمات نمایش	4- A Sett	nalog Output 1 ing	تنظيمات خروجي آنالوگ 1	
5- Analog	5- Analog Output 2 Setting		تنظيمات خروجى آنالو	6- D Sett	igital Output 1 ing	تنظيمات خروجي ديجيتال 1	
7- Digital	Output 2 Setting	8- M تنظیمات خروجی دیجیتال 2 Settin		lodbus & Dig. Input ing	تنظیمات مدباس و ورودی دیجیتال		
9- Tempe	rature Setting		تنظيمات دما	10-	Fotalizer Setting	تنظيمات توتالايزرها	
11-PID Co	ntroller Setting	PI	تنظيمات كنترلر D	12-B	atch Filling Setting	تنظيمات حالت پركن	
13-Calibra Setting	ition & EPD	ہ و ع بودن	کالیبراسیون دستگا تنظیمات تشخیص خالی لوله	14-F	actory Setting	تنظيمات كارخانه	

Flow Display Setting (دبی) تنظیمات نمایشگر (دبی)

اولین زیر منو در سربرگ چهارم مربوط به تنظیمات نمایشگر(دبی) دستگاه میباشد.

A	1	2	3	4-Menu
Ð		1- Flow Display	/ Setting	
Parame	eter	Range	Description	
1-1-Hom	e MassFlow Unit	gr/Min,gr/Sec,Kg/Hour,Kg/Min ,Kg/Sec,Ton/Hour,Ton/Min		واحد نمایش دبی جرمی
1-2-Hom Points N	ne MassFlow Dot Io.	0~3	ایش دبی جرمی	تعداد ارقام پس از اعشار در نم
1-3-Mas	sFlow Damping Time	1~800 Cycles	می جهت کاهش	تعداد میانگینگیری از دبی جر نوسانات لحظهای
		Positive	در جهت مثبت	حمت اندانه گرور د
1-4-Mas	sFlow Direction	Negative	در جهت منفی	بېچك (مداره ميرې دبې
		Bi-Directional	دو طرفه	جرمى
1-5-Mas	sFlow Simulation	ON/OFF	ظور عيبيابي	شبیه سازی دبی <i>ج</i> رمی به من
1-6-Simr Value	nulated MassFlow	0.0~999999.9 Kg/h	ىيازى	میزان دبی جرمی برای شبیه م
1-7-Hom	ne VolFlow Unit	MI/Min,ml/Sec,Liter/Hour,Liter/Min, Liter/Sec,m3/Hour,m3/min	,	واحد نمایش دبی حجمی
1-8-Hom Points N	ne VolFlow Dot Io.	0~3	ایش دبی حجمی	تعداد ارقام پس از اعشار در نم
1-9-VolF	low Damping Time	1~800 Cycles	جمی جهت کاهش	تعداد میانگینگیری از دبی حم نوسانات لحظهای

A	1	2	3	4-Menu
Ð		2- Density & Brix	Display Setting	
Parame	eter	Range	Description	
2-1-Hom	ne Density Unit	gr/cm3,kg/cm3,gr/m3,gr/mL,gr/L ,kg/L,kg/m3		واحد نمايش دانسيته
2-2-Hor Points N	ne Density Dot Io.	0~5	یش دانسیته	تعداد ارقام پس از اعشار در نما
2 2 Don	osity Domning Timo	1. 800 Cyclos	جهت كاهش نوسانات	تعداد میانگینگیری از دانسیته
Z-J-Den	isity Damping Time			لحظهاى
2-4-Der	nsity Simulation	ON/OFF	عيبيابى	شبیه سازی دانسیته به منظور
2-5-Sim	mulated Density	0.0~9999.999 Ka/m3	(میزان دانسیته برای شبیه سازی
Value		J		
2-6-Hor	ne Concentrate Unit	Brix,Refractive Index(nD)		واحد نمايش غلظت
2-7-Hor	me Concentrate Dot	0.4	یش غلظت	تعداد ارقام پس از اعشار در نما
Points N	lo.	0~4		
2-8-Hor	me Concentration	1 000 0 1	مهت كاهش نوسانات	تعداد میانگین گیری از غلظت ج
Dampin	ig Time	I~800 Cycles		لحظهاى

Density & Brix Display Setting (دانسیته و بریکس) که عنظیمات نمایشگر

A	1	2	3		4-Menu		
Ð		3- Other Di	splay Setting				
Parame	eter	Range	Description				
3-1-Hom Parame	ne Page Main Iter	Mass Flow, Density, Brix or nD, Volumetric Flow	Hor	ىفحە ne	پارامتر اصلی جهت نمایش در ص		
3-2- LCI	D goto Standby time	0000~9999 Minute	Sta	ىدت زمان رفتن LCD به حالت Standby			
3-3-LCD	Brightness Percent	0~100 %		صد روشنایی LCD			
3-4-Stat	us LED Mode	0 = Disable 1 = Flow Rate(0-35Hz), 2 = Modbus Communication 3 = Digital Output Status 4 = Digital Input Status		LEI	انتخاب حالت نمایش D Status		
3-5-Cha	ange Password	0000~9999			تغيير رمز عبور منو		
3-6-Pow	ver Key Enable	Power Key Disabled	غیر فعال سازی	:	تنظيمات روشن و خاموش كردر		
J-0-1 0W		Power Key Enabled	فعال سازى		دستگاه با استفاده از کلیدها [*]		

Other Display Setting دیگر تنظیمات نمایشگر *, 7, 7

*در صورت فعالسازی این گزینه می توان با لمس همزمان کلید او او او او این این این گزینه می توان با روشن کرد. در غیر این صورت (Disable بودن این گزینه) دستگاه به صورت دائم روشن خواهد بود.

Analog Outputs Setting تنظیمات خروجی های آنالوگ

A	1	2	3		4-Menu	
Ð		4- Analo	og Output 1 Setting			
Parame	eter	Range	Description			
1		Disable				
-		Mass Flow4~20mA	-			
ł		Vol Flow 4~20mA			تنظيم حالت خروجي آنالوگ	
4-1-Ana	log Output Mode	Density 4~20mA				
		Temperature 4~20mA	ی DISable حروجی همیشه UIIA حواهد بود.		در خالب Disable خروجی هم	
		Brix 4~20mA	_			
		PID 4~20mA				
4-2- Δn	alog Output Force	Not Force	مرک دست خدمج آناله گرا: 1 تا 20mA را فراصل 1mA			
7270	alog Output i orec	Force to 0,1,2,~,20mA	مريف فسني حروجي افلوك از ٢٠ ٢ ١١١٠ کو فواصل ١١١٠			
ł			مقدار برای حد پایین جریاندهی خروجی (4mA).			
4-3-Ana	alog Out Min Flow	0.0~999999.0	واحد این پارامتر و مقدار آن بر اساس انتخاب حالت خروجی آنالوگ			
					در تنظیم قبلی مشخص میشود.	
			جی (20mA).	ریاندهی خرو	حداکثر مقدار برای حد بالای ج	
4-4- An	alog Out Max Flow	0.0~999999.0	حالت خروجی آنالوگ	ساس انتخاب	واحد این پارامتر و مقدار آن بر ا	
					در تنظیم قبلی مشخص میشود.	
4-5- An	alog Out Value	0~20mA			مقدار کنونی خروجی آنالوگ	
1 6 Ang	alog Out Officat	20000 20000	0.1 mA Offset	هر 327 عدد	Offset خروجی آنالوگ(به ازای	
4-0-Alla	alog Out Offset	-20000~20000			تغییر در خروجی آنالوگ)	
4-7-Ana	alog Out D.E.C.	0~99999			AD5420 Data Eror	
1-8-A C)ut Open Loop Alarm	Alarm Disabled	غيرفعالسازي هشدار		هشدار باز بودن خروجی آنالوگ	
4-0-A.C		Alarm Enabled	فعالسازی هشدار			

نظیمات خروجی آنالوگ دوم نیز همانند خروجی آنالوگ اول در زیر منوی 5-Analog Output 2 Setting قابل 🛈 انجام است.

A	1			2	3	4-Mer	าน			
Ð			1	6-Digital Ou	utput 1 Setting					
Paramet	er	Range		Description						
		Disable		در این حالت خروجی همیشه غیر فعال است.						
		Mass Flow Pu	lse	تر 4-6) یک پالس به طول						
		Vol. Flow Puls	e	ر 6-4) یک پالس به طول	در این حالت به ازای عبور مقدار مشخصی از مایع بر حسب حجم (پارامتر 6-4) یک پالس به طول بارامت 6-3 بر دی، خودجی دیجیتال ارسال می شود.					
		High M.Flow	Alarm	ىشود.	ىقدار پارامتر 5-6 بيشتر شود خروجى فعال م	در حالتی که فلو جرمی از ه	حال			
		Low M.Flow A	larm	ىشود.	ىقدار پارامتر 6-6 كمتر شود خروجى فعال م _و	در حالتی که فلو جرمی از ،	;) ;			
1		M.Flow Out of Range		ع ال مىشود.	وده پارامتر 6-6 و 5-6 خارج شود خروجی ف	زمانی که فلو جرمی از محد	J J			
		High Density	Alarm	شود.	دار پارامتر 5-6 بیشتر شود خروجی فعال می	در حالتی که دانسیته از مق	ੇ ਨੂੰ			
		Low Density A	Alarm	نبود.	دار پارامتر 6-6 کمتر شود خروجی فعال می	در حالتی که دانسیته از مق	5			
	de de	Density Out o	f Range	ں میشود.	ه پارامتر 6-6 و 5-6 خارج شود خروجی فعاا	زمانی که دانسیته از محدود				
	10	High V.Flow A	larm	ىىشود.	مقدار پارامتر 3-3 بيشتر شود خروجي فعال ه	در حالتی که فلو حجمی از	4:			
	2	Low V.Flow A	larm	ىشود.	مقدار پارامتر 4-3 كمتر شود خروجي فعال م	در حالتی که فلو حجمی از	2			
	TT OT	V.Flow Out of	Range	عال مىشود.	دوده پارامتر 3-3 و 4-3 خارج شود خروجی ف	زمانی که فلو حجمی از مح	K.			
		High Brix Alarm		نود.	ار پارامتر 3-3 بیشتر شود خروجی فعال می	در حالتی که بریکس از مقد	تال در ا			
į	jit:	Low Brix Alarm		ود.	.ار پارامتر 4-3 کمتر شود خروجی فعال میش	در حالتی که بریکس از مقد				
-	Ĭ	Brix Out of Range		مىشود.	اين قسو					
	+ 1	High Temp Alarm								
	9	Low Temp Al	arm		: بت بت					
-		Temp Out of	Range	شود.						
		Empty Pipe D	etected	جي فعال ميشود.	٦					
		System is Ok			در حالتی که دستگاه هیچ	Ŋ				
ļ		Dump Ctrl>T1	Limit	آ واقع در سربرگ Setting.	Totaاز مقدار تعیین شده برای Fotal Limit1	در صورتی که مقدار lizer1	â			
ł		rump curri	Linin		ى.شود.*	بيشتر باشد خروجي فعال ه	ÿ			
		Pump Ctrl>T2	P I imit	T واقع در سربرگ	Total از مقدار تعیین شده برای otal Limit2	در صورتی که مقدار izer2				
				Setting. بیشتر باشد خروجی فعال میشود.*						
-		3State Fill Lov	v Valve		سه وضعيته.	خروجی برای حالت پر کن ،				
		Batch Filling \	/alve		ِ کنترلی سیستم پر کن اتوماتیک عمل می کند	خروجی برای باز کردن شیر				
		Not Forced			- اتوماتیک)	عدم تحریک دستی (تحریک	تحريک دستی			
6-2- Digital O	ut Force	Force to OFF				خاموش کردن دستی	خروجى			
		Force to ON				روشن کردن دستی	ديجيتال			
6-3- Digital O	ut Pulse width	1~1300 [120µ	Sec]		ديجيتال	، پالس ایجاد شده در خروجی	مدت زمان یا عرض			
6-4- Digital O	ut Volume/Pulse	0.01~100000).()		حالت انتخابى خروجى ديجيتال	ی به ازای هر پالس بر حسب .	تنظيم حجم عبوري			
6-5- Digital O	ut High Limit	0.0~999999	0			رد خروجی دیجیتال	حد بالا برای عملک			
6-6 - Digital O	ut Low Limit	0.0~999999	0			لكرد خروجي ديجيتال	حد پایین برای عم			
6-7- Digital O	ut Hystersis	تاخير Hystersis برای خروجی ديجيتال Hystersis برای خروجی ديجيتال								

مرابع تنظيمات خروجي هاي ديجيتال Digital Outputs Setting

*در صورت انتخاب یکی از این دو حالت حتما باید پارامتر Pump control Mode مربوط به آن توتالایزر در منوی Totalizer Setting روی حالت Auto تنظیم گردد.

- ولتاژ خروجی دیجیتال 24VDC و حداکثر جریان مجاز آن 500mA میباشد.
- آ) تنظیمات خروجی دیجیتال دوم نیز همانند خروجی دیجیتال اول در زیر منوی **7-Digital Output 2 Setting** قابل انجام است.

۴,٦,٦ تنظيمات مدباس و ورودی ديجيتال Modbus & Digital Inputs Setting

از ورودیهای دیجیتال جهت صفر کردن مقادیر Totalizerها، ثابت نگهداشتن آنها و فعال یا غیر فعال کردن PID کنترلر و سیستم پرکن استفاده میشود. تنظیمات این بخش از طریق زیر منوی Digital Inputs Setting قابل انجام میباشد.

A	1	2		3	4-Menu	
Ð		8- Modb	us & I	Digital Inputs Setting		
Parame	eter	Range	Des	cription		
		Disable			ورودي ديجيتال غير فعال	
		Totalzer 1 Reset		ٹ*	صفر شدن Totalizer شماره یک	
		Totalizer 2 Reset		**	صفر شدن Totalizer شماره در	
1		Totalizer 1&2 Reset		شدن همزمان Totalizer شماره یک و دو ^{***}		
8-1-Diai	8-1-Digital Input-1 Mode	Totalizer 1 Hold	، نگه داشتن Totalizer شماره یک			
e i Digi		Totalizer 2 Hold		ثابت نگه داشتن Totalizer شماره دو		
		Totalizer 1&2 Hold		Тс	ثابت نگه داشتن هردو tallizer	
		PID Enable		PID (فقط برای ورودی دیجیتال	فعال یا غیر فعال کردن کنترلر شمارہ یک) ****	
1		Batch Filling Start	ود	رآيند Batch Filling شروع مي	با ON شدن ورودی دیجیتال ف	
		9600, 19200,				
8-2- Mo	dbus Baud Rate	38400, 57600,		Modb	سرعت انتقال داده در ارتباط US	
• =		115200, 230400,			. , , , , , , , , , , , , , , , , , , ,	
		460800, 921600				
8-3- Mo	dbus Data Mode	8bit, No Parity, 2Stop			پارامترهای ارتباطی Modbus	
8-4- Mo	dbus Node Address	0~31		روتكل Modbus	شمارهٔ گره در ارتباط سریال با پ	

* در صورتی میتوان از این طریق Totalizer را صفر کرد که پارامتر 2-10 این اجازه را داده باشد. (بخش 4.6.8) ** در صورتی میتوان از این طریق Totalizer را صفر کرد که پارامتر 7-10 این اجازه را داده باشد. (بخش 4.6.8) *** در صورتی میتوان از این طریق Totalizerها را صفر کرد که پارامتر های 2-10 و 7-10 این اجازه را داده باشند. (بخش 4.6.8) **** در صورتی که پارامتر 1-8 بر روی گزینه Enable By Digital Input تنظیم شده باشد به کار می رود. (بخش 4.6.9)

🛈 حداقل ولتاژ تحریک ورودی دیجیتال 18VDC با حداقل جریان 5mA می باشد.

آدرس پارامترهای ارتباط سریال در بخش 6 (پیوست A) آمده است.

۲۰٫۲٫۴ تنظیمات دما Temperature Setting

A	1	2	3		4-Menu
Ð		9- Temp	erature Setting		·
Param	neter	Range	De	scription	
9-1- Tu	be Temp. Offset	-50~+50			Offset دادن به دمای لوله
0 2 т.	uho Tomp Domping	1~100 Cycles	ش	، جهت کاهن	تعداد میانگینگیری از دمای لول
9-2-11	ibe remp. Damping				نوسانات لحظهاى
9-3- Tu	ube Temp. Unit	0 = Centigrade			واحد نمایش دمای لوله
		1 = Fehrenheit			
9-4- Tı	ube Temp. Dotpoint	0~1		ن لوله	تعداد رقم اعشار در نمایش دمای
9-5- TI	ubo Tomp Simulation	0 = OFF		عيبيابي	شبیه سازی دمای لوله به منظور
7-5-10	abe remp. Simulation	1 = ON			
9-6- Tı	ube Temp. Sim. Value	0~120 Centigrade		ى	میزان دمای لوله برای شبیه ساز
9-7- Bo	ody Temp. Offset	-50~+50			Offset دادن به دمای بدنه
00.0	du Toma Domain <i>a</i>	1~100 Cycles	ش	ه جهت کاه	تعداد میانگینگیری از دمای بدن
9-8- B(bay Temp. Damping				نوسانات لحظهاى
0 0 P/	dy Tomp Simulation	0 = OFF		عيبيابى	شبیه سازی دمای بدنه به منظور
7-7-DI	ouy remp. Simulation	1=ON			
9-A- B	ody Temp. Sim. Value	0~120 Centigrade		ى	میزان دمای بدنه برای شبیه ساز

۲۰۱۸، ۲otalizers Setting توتالایزرها ۲۰۰۹

A	1		2	3	4-Menu		
Ð	1 ter alizer 1 Unit tal 1 Reset Mode tal 1 Reset Mode tal 1 Pump Ctrl tal 1 Pump Ctrl set Total 1 Value talizer 2 Unit tal 2 Reset Mode tal 2 Pump Ctrl		10- To	talizers Setting			
Parame	ter	Ran	ge	Description			
10-1- Tot	alizer 1 Unit	gr(10 ml(10	DP), Kg(1DP), Ton(3DP), DP), Liter(1DP), m3(3DP)	متر مکعب	د توتالایزر: میلی لیتر / لیتر /	واحد	
		OFF(Cannot Reset)	هیچوقت صفر نمیشود.	در این حالت توتالایزر		
		Reset	in Setting Page	توتالایزر با استفاده از پارامتر Reset Totalizer 1 در سربرگ Setting صفر میشود.		تنظيم نحو	
10 2 To	tal 1 Darat Mada	Reset	With Digital In.	ورودی دیجیتال * صفر میشود.	. توتالايزر با استفاده از	2	
	Reset in Sett. & Dig. In.		در این حالت توتالایزر با هر دو حالت قبلی ریست میشود.		ر دردن توتا/		
	Reset	on Limit	صفر شدن توتالایزر با فرارسیدن حد تنظیم شده به عنوان Totalizer Limit در سربرگ Setting				
10-3- To	tal 1 Pump Ctrl	Man	ual Mode				
Mode		Auto	Mode	ن حالت کنترل پمپ از طریق توتالایزر 1			
10-4- To	tal 1 Pump Ctrl	Forc	e OFF	ط تەتالات. 1	یک دستہ کنتا ہمت توس	تحر	
Force		Forc	e ON	-),	<u> </u>	J	
10-5- Re	set Total 1 Value	Can	cel		کادن مقدار توتالات 1	صف	
		Rese	t			,	
10-6- To	talizer 2 Unit						
10-7- To	tal 2 Reset Mode						
10-8- To	tal 2 Pump Ctrl			T			
Mode			م میشود.	بارامترها همانند I otalizer 1 تنظيم	این _؛		
10-9- To	tal 2 Pump Ctrl						
Force							
10-A- Re	set Total 2 Value						

*در صورتی مقدار توتالایزر صفر میشود که پارامتر Digital Input Mode در زیر منوی Digital Input Setting واقع در سربرگ Menu بر روی Totalizer Reset تنظیم شده باشد. (بخش ۵۵.6%)

۴٫٦٫۹ تنظیمات کنترلر PID

A	1	2		3	4-Menu	
Ð		11- Pid	Cont	roller Setting		
Param	eter	Range	Des	cription		
		Disable			غير فعال	حالت
11-1- PI	D Mode	Always Enable			هميشه فعال	عملكرد
		Enable By Digital Input	فعال در صورت ON بودن ورودی دیجیتال*			كنترلر
11-2- PI	ID Gain(P)	0.001~65.000				1
11-3- PI	D Integral(i)	0.00~650.00 Sec			نترلر PID	ضرایب ک
11-4- PI	D Derivative(D)	0.00~650.00 Sec				
11-5- PI	ID Sample Time	0.1~20.0 Sec			له برداری کنترلر	زمان نمون
11-6- PI	D Out Min Valve	0~100 %			التنكر مراجع	الم الم
11-7- PI	D Out Max Valve	1~100 %	زهٔ عملکرد خروجی گنترلر			بارہ عمد
11-8- PI	D Out Direction	Incremental/decremental		ىر بە صورت افزايشى/ كاھشى	لكرد خروجى كنترا	جهت عما

*در صورتی با این حالت کنترلر PID فعال میشود که پارامتر Digital Input Mode در زیر منوی Digital Input Setting واقع در سربرگ Menu بر روی PID Enable تنظیم شده باشد. (بخش ⊠4.6.6)

راهنمای تنظیم کنترلر PID در پیوست B (بخش 7) همین دفترچه آمده است. 🛈

۶،۲۰۱۰ تنظیمات حالت پرکن Batch Filling Setting

فلومترهای کوریولیس **پریسماتک** میتوانند بدون نیاز به هیچ کنترلر دیگری به طور خودکار با استفاده از قابلیت BatchFilling عملیات پر کردن را کنترل نمایند. عملیات پرکن میتواند به صورت دستی و یا با استفاده از یک ورودی دیجیتال فعال گردد (بخش 4.6.6) و در هر سیکل پرکن برنامهٔ BatchFilling شیر کنترلی سیستم پرکن را به صورت خودکار باز و بسته مینماید. پارامترها و تنظیمات مربوط به سیستم BatchFilling در جدول زیر شرح داده شده است.

A	1	2	3	4-Menu			
Ð		12- Batc	h Filling Setting				
Paramete	r R	ange	Description				
12-1- Manual Force Filling		illing not Forced	ِکرد پرکن به صورت اتوماتیک				
	N	Ianual Force Filling	تحریک دستی پر کن				
Auto Fill Setp		uto Fill Setpoint OFF	سيستم تصحيح خودكار * خاموش				
12-2- Auto	A	uto Fill Setpoint ON	سيستم تصحيح خودكار روشن				
12.2 Initial Diff Value		0000 0 0000 0 ml itor	کاری پرکن به پارامتر Next	این مقدار در اولین سیکل آ			
12-3-111111		7777.7~7777.7 IIILIIEI	Filling Setpoint اضافه می گردد.				
12-4- Max	Filling Time 0	.0~50.0 Sec	شترین زمان مجاز برای پر کردن هر ظرف ^{**}				
12-5- Valve	OFF Time 0	.00~7.50 Sec	نه برداری کنترلر				
12-6- Last I	Filling Volume	جم آخرین ظرف پر شده					
12-7- Last I	Difference	ختلاف بين آخرين مقدار Next filling Setpoint و Last Filling Volume					
12-8- Next	Filling Setpoint		٥.	مقدار Setpoint اصلاح شد			
12-9- Last I	Filling Time		ظرف	مدت زمان پر شدن آخرین			

* با فعالسازی "سیستم تصحیح خودکار"، دستگاه پارامتر Next Filling Setpoint را با پارامتر Last Filling Volume مقایسه کرده و در صورت وجود هر گونه اختلافی بین این دو خطای بوجود آمده را با تغییر Next Filling Setpoint جبران می سازد. ** در صورتی که زمان پر کردن از این حد تجاوز نماید به معنی آن است که دبی پایین تر از حد انتظار است و یا مخزن پرکن خالی شده است در این حالت فرآیند پر کردن متوقف می شود و خطای Low Flow Alarm فعال می شود.

A	1	2	3		4-Menu		
Ð		13- Calibration & EPD Setting					
Paramete	r	Range	Description				
13-1- Mass Factor	Flow Calibration	0.0000~99.9999	_ر عدد فلوی جرمی	ضریب در)	ضریب تصحیح فلو جرمی (این اندازهگیری شده ضرب میشود		
13-2- Low C	Cut-off Delta Teta	0~65.500	بورتی که ولتاژ القا شده روی الکترودها از این میزان کمتر فلو را صفر در نظر می گیرد. (تنظیم توسط کارخانه)				
13-3- Densi	ity Cal. Gain	0.00000~9.99999	مدد دانسیته اندازهگیری	ریب تصحیح دانسیته (این ضریب در عدد دانسیته اندازه گیری ده ضرب میشود)			
13-4- Dens	ity Cal. Offset	-9999.999~9999.999 Kg/m3	مربوط به دانسیته				
13-5- Brix Cal. Gain		0.0001~6.5535	ریب تصحیح بریکس (این ضریب در عدد بریکس اندازهگیری ده ضرب میشود)				
13-6- Brix C	Cal. Offset	-270.00~270.00			Offset مربوط به بریکس		
12 7 Empty	Pino Dot Enablo	0=EPD Disable	غير فعال كردن	غير فعال كردن			
із-7-спірту	ripe Det.Lilable	1=EPD Enable	فعال کردن		تسعيص حاني بودن تونه		
13-8-Empty	/ Pipe Det. Freq.	0~9999 Hz	له (تنظیم توسط	ی بودن لو	سطح فرکانس نشاندهنده خال کارخانه)		
13-9-ADC Damping(n	nA,Totalizers)	1~500 Cycles	نروجی جریان و	A(برای خ	تعداد سیکل DC Damping توتالایزرها)		
13-A-ADC Gamma(m	A,Totalizers)	0.1~99.9 %			ضريب فيلتر پايين گذر ADC		

. *در صورت فعال بودن این گزینه هنگامی که محصولی داخل لوله نباشد، روی LCD دستگاه هشدار Empty Pipe Detected به معنی خالی بودن لوله نمایش داده میشود و Totalizer ها نیز متوقف میشوند.

Factory Setting کارخانه ،۲٫۱۲ منوی تنظیمات کارخانه

A	1	2		3	4-Menu		
Ð		14	14- Factory Setting				
Paramete	r	Range	Desc	ription			
14-1-Pickup	o Setpoint	Read Only			تنظيمات كويل ها		
14-2-Picku	p Low Limit	Read Only			تنظيمات كويل ها		
14-3-Swee	p Freq. Step	Read Only		يو	تنظیمات Sweep فرکانس درا		
14-4-Swee	p Drive Amplitude	Read Only		يو	تنظیمات Sweep فرکانس درا		
14-5-IIR Fil	ter Range	Read Only			وضعيت فيلتر ميان گذر		
14-6-Test 1	Fimer Value	Read Only			مدت زمان سپری شده از تست		
14-7-Test 1	Timer Setpoint	Read Only		ىت	مدت زمان تعیین شده برای تس		
14-8-Test 1	Fimer Status	Read Only		مر	وضعيت فعال/غيرفعال بودن تاي		
14-9-Сору	Param to Fact Set	Read Only			کپی کردن پارامترهای دستگاه		
14-A-Reset	All Settings						
14-A-Nesel All Settlings		Reset to Fact. Setting		0			

^ه سرویس و نگهداری

فلومتر کوریولیس **پریسماتک** به نحوی طراحی و ساخته شده است که در شرایط نرمال استفاده، نیازی به نگهداری و مراقبت دائم ندارد. در صورت بروز مشکل پارامترهای خطایابی دستگاه (بخش 4.50) را بررسی نمایید.

- اغلب مواقع اندازه گیری ناپایدار خطا در اندازه گیری به دلیل مشکل در سیم ارت به وجود میآید. که در این مواقع ابتدا
 می ایست از صحت ارت اطمینان حاصل نمود.
 - 🛈 برای تمیز کردن سطح بیرونی دستگاه از موادی استفاده نمایید که به بدنه آسیب نرساند.
- گسکتهای کلمپ دو سر سنسور میبایستی به صورت دورهای بررسی شوند و در صورت نیاز تعویض گردند. فواصل زمانی برای هر بار تعویض به دمای کاری و مواد عبوری از داخل خط لوله بستگی دارد.

Home Page					
Parameter Name	Modbus Address	Format	Туре	Range	
Mas. Flow	776	Int-32bit	R		
Vol. Flow	920	Int-32bit	R		
Density	904	Uint-32bit	R		
Brix/nD	906	Uint-32bit	R		
Temp	908	Uint-32bit	R		
Totalizer 1(M)	772	Uint-32bit	R		
Totalizer 2(M)	774	Uint-32bit	R		
Digital Input 1	203.4	Bit	R	0 = Off	
Digital Output 1	203.6	Bit	R	0 = Off 1 = On	
Digital Output 2	203.7	Bit	R	0 = Off 1 = On	
Analog Output 1	231	Uint-16bit	R	(Gain = 0.0305175)	
Analog Output 2	282	Uint-16bit	R	(Gain = 0.0305175)	
Alarms	227	Uint-16bit	R	Bit O to 16	
Serial Nomber	352	Uint-32bit	R		
Device Software	200	Uint-16bit	R		
Main Software	200	Uint-16bit	R		

🔭 پیوست A: آدرس پارامترهای ارتباط سریال RS485 Modbus RTU

1- Flow Display Setting				
Parameter Name	Modbus Address	Format	Туре	Range
1-1- Home MassFlow Unit	7	Uint-16bit	R/W	0 = Gram/Min 1 = Gram/Sec 2 = Kg/Hour 3 = Kg/Min 4 = Kg/Sec 5 = Ton/Hour 6 = Ton/Min
1-2- Home MassFlow DotPoints	8	Uint-16bit	R/W	O to 3
1-3- MassFlow Damping Time	22	Uint-16bit	R/W	1 to 800 Cycles
1-4- MassFlow Direction	9	Uint-16bit	R/W	O = Positive 1 = Negative 2 = Bi-Directional
1-5- MassFlow Simulation	203.9	Bit	R/W	0 =Off 1 = On
1-6- Simulated MassFlow Value	780	Int-32bit	R/W	0.0 to 999999.9 Kg/h
1-7- Home Vol.Flow Unit	155	Uint-16bit	R/W	O = ml/Min 1 = ml/Sec 2 = Liter/Hour 3 = Liter/Min 4 = Liter/Sec 5 = m3/Hour 6 = m3/Min
1-8- Home Vol.Flow Dotpoints	156	Uint-16bit	R/W	O to 3
1-9- Vol. Flow Damping Time	157	Uint-16bit	R/W	1 to 800 Cycles

RS485 Modbus RTU parameter addresses

2- Density & Brix Display Setting				
Parameter Name	Modbus Address	Format	Туре	Range
2-1- Home Density Unit	152	Uint-16bit	R/W	0 = Gram/cm3 1 = Kg/cm3 2 = Gram/m3 3 = Gram/mL 4 = Gram /Liter 5 = Kg/Liter 6 = Kg/m3
2-2- Home Density DotPoints	153	Uint-16bit	R/W	0 to 5
2-3- Density Damping Time	154	Uint-16bit	R/W	1 to 800 Cycles
2-4- Density Simulation	288.F	Bit	R/W	0 =Off 1 = On
2-5- Simulated Density Value	912	UInt-32bit	R/W	0.0 to 9999.999 Kg/m3
2-6- Home Concentrate Unit	158	Uint-16bit	R/W	0 = Brix 1 = Refractive Index
2-7- Home Concentrate DotPoints	159	Uint-16bit	R/W	0 to 4
2-8- Concentrate Damping Time	160	Uint-16bit	R/W	1 to 800 Cycles

3- Other Display Setting

Parameter Name	Modbus Address	Format	Туре	Range	
3-1- Home Page Main Parameter	151	Uint-16bit	R/W	0 = MassFlow 1 = Density 2 = Brix or nD 3 = Volumetric Flow	
3-2- LCD goto Standby Time	153	Uint-16bit	R/W	0 to 5	
3-3- LCD Brightness Percent	154	Uint-16bit	R/W	1 to 800 Cycles	
3-4- Status LED Mode	288.F	Bit	R/W	0 =Off 1 = On	
3-5- Change Password	912	UInt-32bit	R/W	0.0 to 9999.999 Kg/m3	
3-6- Power Key Enable	158	Uint-16bit	R/W	0 = Brix 1 = Refractive Index	

4- Analog Output 1 Setting				
Parameter Name	Modbus Address	Format	Туре	Range
4-1- Anal. Out1. Mode	25	Uint-16bit	R/W	O= Disable 1= MassFlow 4-20 mA *2= Vol. Flow 4-20 mA* 3= Density 4-20 mA 4= Temperature 4-20 mA 5= Brix 4-20 mA 6= PID 4-20 mA
4-2- Anal. Out1. Force	26	Uint-16bit	R/W	O= No Force 1= Force to 0 mA 2= Force to 1 mA 2O= Force to 19 mA 21= Force to 20mA
4-3- An. Out.1 Min Flow	354	Uint-32bit	R/W	0.0 to 999999.0 L/h
4-4- An. Out.1 Max Flow	356	Uint-32bit	R/W	0.0 to 999999.0 L/h
4-5- An. Out.1 Value	231	Uint-16bit	R	0.000 to 20.000 mA 0=0mA,65535=20mA
4-6-Analog Out.1 Offset	89	Int-16bit	R/W	-20000 to +20000 Each 327 Offset Value = 0.1 mA
4-7-Analog Out.1 D.E.C.	209	Uint-16bit	R	0 to 99999
4-8-A. Out.1 Open Loop Alarm	230.2	Bit	R	O= Alarm Disabled 1= Alarm Enabled

5- Analog Output 2 Setting				
Parameter Name	Modbus Address	Format	Туре	Range
5-1- Anal. Out2. Mode	55	Uint-16bit	R/W	0= Disable 1= MassFlow 4-20 mA *2= Vol. Flow 4-20 mA* 3= Density 4-20 mA 4= Temperature 4-20 mA 5= Brix 4-20 mA 6= PID 4-20 mA
5-2- Anal. Out2. Force	56	Uint-16bit	R/W	O= No Force 1= Force to 0 mA 2= Force to 1 mA 20= Force to 19 mA 21= Force to 20mA
5-3- An. Out.2 Min Flow	440	Uint-32bit	R/W	0.0 to 999999.0 L/h
5-4- An. Out.2 Max Flow	442	Uint-32bit	R/W	0.0 to 999999.0 L/h
5-5- An. Out.2 Value	282	Uint-16bit	R	0.000 to 20.000 mA 0=0mA,65535=20mA
5-6-Analog Out.2 Offset	131	Int-16bit	R/W	-20000 to +20000 Each 327 Offset Value = 0.1 mA
5-7-Analog Out.2 D.E.C.	280	Uint-16bit	R	0 to 99999
5-8-A. Out.2 Open Loop Alarm	281.2	Bit	R	O= Alarm Disabled 1= Alarm Enabled

5- Analog Output 2 Setting

6- Digital Output 1 Setting					
Parameter Name	Modbus Address	Format	Туре	Range	
6-1- Dig. Out1 Mode	41	Uint-16bit	R/W	0= OFF 1= Mass flow Pulse 2= Vol Flow Pulse 3= High MassFlow Alarm 4= Low MassFlow Alarm 5= MassFlow Out of Range 6= Hight Density Alarm 7= Low Density Alarm 8= Density Out of Range 9= High V.Flow Alarm 10= Low V.Flow Alarm 11= V.Flow Out of Range 12= High Brix Alarm 13= Low Brix Alarm 13= Low Brix Alarm 14= Brix Out of Range 15= High Temp Alarm 16= Low Temp Alarm 17= Temp Out of Range 18= Empty Pipe Detected 19= System is OK 20= Pump Ctrl>Total 1 Limit 21= Pump Ctrl>Total 1 Limit 22= 3State Fill Low Valve 23= Batch Filling Valve	
6-2- Dig. Out1 Force	42	Uint-16bit	R/W	0= Not Forced 1= Force to OFF 2= Force to ON	
6-3- D.O.1 Pulse Width	44	Uint-16bit	R/W	1 to 1300 *720uSec	
6-4-D.O.1 Volume/Pulse	366	Uint-32bit	R/W	0.01 to 999999.99	
6-5- Dig Out1 Hi Limit	358	Uint-32bit	R/W	0.0 to 999999.0	
6-6- Dig Out1 Lo Limit	360	Uint-32bit	R/W	0.0 to 999999.0	
6-7- Dig Out1 Hysters.	43	Uint-16bit	R/W	1.0 to 6550.0	

Parameter Name	Modbus Address			
	INIOUDUS AUGI 655	Format	Туре	Range
7-1- Dig. Out2 Mode	47	Uint-16bit	R/W	0= OFF 1= Mass flow Pulse 2= Vol Flow Pulse 3= High MassFlow Alarm 4= Low MassFlow Alarm 5= MassFlow Out of Range 6= Hight Density Alarm 7= Low Density Alarm 8= Density Out of Range 9= High V.Flow Alarm 10= Low V.Flow Alarm 10= Low V.Flow Alarm 11= V.Flow Out of Range 12= High Brix Alarm 13= Low Brix Alarm 14= Brix Out of Range 15= High Temp Alarm 16= Low Temp Alarm 17= Temp Out of Range 18= Empty Pipe Detected 19= System is OK 20= Pump Ctrl>Total 1 Limit 21= Pump Ctrl>Total 1 Limit 22= 3State Fill Low Valve 23= Batch Filling Valve
7-2- Dig. Out2 Force	48	Uint-16bit	R/W	O= Not Forced 1= Force to OFF 2= Force to ON
7-3- D.O.2 Pulse Width	50	Uint-16bit	R/W	1 to 1300 *720uSec
7-4-D.O.2 Volume/Pulse	368	Uint-32bit	R/W	0.01 to 999999.99
7-5- Dig Out2 Hi Limit	362	Uint-32bit	R/W	0.0 to 999999.0
7-6- Dig Out2 Low Limit	364	Uint-32bit	R/W	0.0 to 999999.0
7-7- Dig Out2 Hysters.	49	Uint-16bit	R/W	1.0 to 6550.0

7- Digital Output 2 Setting

8- Modbus & Digital Inp	8- Modbus & Digital Inputs Setting					
Parameter Name	Modbus Address	Format	Туре	Range		
8-1- Dig. In Mode	53	Uint-16bit	R/W	O= Disable 1= Total1 Reset 2= Total2 Reset 3= Total1&2 Reset 4= Total1 Hold 5= Total2 Hold 6= Total 1&2 Hold 7= PID Enable 8= Batch Filling Start		
8-2- Modbus Baud Rate	29	Uint-16bit	R/W	0= 9600 bps 1= 19200 bps 2= 38400 bps 3= 57600 bps 4= 115200 bps 5= 230400 bps 6= 460800 bps 7= 921600 bps		
8-3- Modbus Data Mode	30	Uint-16bit	R	O= 8bit,Even,1Stop 1= 8bit,Even,2Stop 2= 8bit,Odd,1Stop 3= 8bit,Odd,2Stop 4= 8bit,None,1Stop 5= 8bit,None,2Stop		
8-4- Modbus Node Add.	31	Uint-16bit	R/W	O to 31		

9- Temperature Setting					
Parameter Name	Modbus Address	Format	Туре	Range	
9-1- Tube Temp. Offset	11	int-16bit	R/W	-50 to 50 °C	
9-2- Tube Temp. Damping	12	Uint-16bit	R/W	1 to 100 Cycles	
9-3- Tube Temp. Unit	161	Uint-16bit	R/W	0= Centigerade 1= Fehrenheit	
9-4- Tube Temp. DotPoints	162	Uint-16bit	R/W	0 to 1	
9-5- Tube Temp. Simulation	2.A	Bit	R/W	0= Off 1= On	
9-6-Tube Temp. Simulated Value	10	Uint-16bit	R/W	0.0 to 120 °C	
9-7- Body Temp. Offset	163	Int-16bit	R/W	-50 to 50 °C	
9-8- Body Temp. Damping	164	Uint-16bit	R/W	1 to 100 Cycles	
9-9- Body Temp. Simulation	3.1	Bit	R/W	0= Off 1= On	
9-A-Body Temp. Simulated Value	165	Uint-16bit	R/W	0.0 to 120 °C	

10- Totalizers Setting					
Parameter Name	Modbus Address	Format	Туре	Range	
10-1- Totalizer1 Unit	57	Uint-16bit	R/W	O= Gram (1 DP) 1= Kg (1 DP) 2= Ton (3 DP) 3 = mL (1 DP) 4 = Liter (1 DP) 5 = m3 (3DP)	
10-2- Total1 Reset Mode	59	Uint-16bit	R/W	O= OFF 1= Setting Page 2= Digital Input 3= Sett. & Dig. In 4= Reset on Limit	
10-3- Total 1 Pump Ctrl Mode	261.0	Bit	R/W	0 = Manual Mode 1 = Auto Mode	
10-4- Total 1 Pump Ctrl Force	261.1	Bit	R/W	0 = Force Off 1 = Force On	
10-5- Reset Total 1 Value	203.A	Bit	W	1= Totalizer 1 Reset	
10-6- Totalizer2 Unit	60	Uint-16bit	R/W	O= Gram (1 DP) 1= Kg (1 DP) 2= Ton (3 DP) 3 = mL (1 DP) 4 = Liter (1 DP) 5 = m3 (3 DP)	
10-7- Total2 Reset Mode	62	Uint-16bit	R/W	O= OFF 1= Setting Page 2= Digital Input 3= Sett. & Dig. In 4= Reset on Limit	
10-8- Total 2 Pump Ctrl Mode	261.2	Bit	R/W	0 = Manual Mode 1 = Auto Mode	
10-9- Total 2 Pump Ctrl Force	261.3	Bit	R/W	0 = Force Off 1 = Force On	
10-5- Reset Total 2 Value	203.B	Bit	W	1= Totalizer 2 Reset	

11- PID Controller Setting				
Parameter Name	Modbus Address	Format	Туре	Range
11-1-PID Enable Mode	33	Uint-16bit	R/W	O= Disable 1= Always Enable 2= Enable By Dig. In. 1
11-2-PID Gain (P)	34	Uint-16bit	R/W	0.001 to 65.000
11-3-PID Integral (I)	35	Uint-16bit	R/W	0.00 to 650.00 Sec
11-4-PID Derivative(D)	36	Uint-16bit	R/W	0.00 to 650.00 Sec
11-5-PID Sample Time	37	Uint-16bit	R/W	0.1 to 20.0 Sec
11-6-PID Out Min Value	38	Uint-16bit	R/W	0 to 100 %
11-7-PID Out Max Value	39	Uint-16bit	R/W	1 to 100 %
11-8-PID Out Direction	2.2	Bit	R/W	0= Incremental 1= Decremental
PID Setpoint(Mass Flow)	388	Uint-32bit	R/W	0.0 to 999999.9 Kg/h
PID Loop Output	223	Uint-16bit	R	0.00 to 100.00 % 0=0%, 65535=100%
PID Manual Value	40	Uint-16bit	R/W	0 to 100 %

12- Batch Filling Setting					
Parameter Name	Modbus Address	Format	Туре	Range	
12-1-Manual Force Filling	245.0	Bit	R/W	0= Filling not Forced 1= Manual Force Filling	
12-2-Auto SP.Correction	5.0	Bit	R/W	0= Auto Fill Setpoint OFF 1= Auto Fill Setpoint ON	
12-3-Initial Diff.Value	402	Int-32bit	R/W	-9999.9 to 9999.9 mLiter(cc)	
12-4-Max Filling Time	400	Uint-32bit	R/W	0 to 99.9 Sec	
12-5-Valve Off Time	66	Uint-16bit	R/W	0 to 9.99 Sec	
12-6-Last Filling Volume	592	Uint-32bit	R	0 to 9999999.9 mLiter(cc)	
12-7-Last Difference	594	Int-32bit	R	-999999.9 to 999999.9	
12-8-Next Filling Setpoint	596	Uint-32bit	R	0 to 9999999.9 mLiter(cc)	
12-9-Last Filling Time	600	Uint-32bit	R	0 to 999.99 Sec	

13- Calibration & EPD Setting						
Parameter Name	Modbus Address	Format	Туре	Range		
13-1-MassFlow Calibration Factor	374	Uint-32bit	R/W	O to 99.9999		
13-2-Low Cut-off Delta Teta	16	Uint-16bit	R/W	0 to 65.500		
13-3-Density Cal. Gain	518	Uint-32bit	R/W	0.00000 to 9.99999		
13-4-Density Cal. Offset	520	Int-32bit	R/W	-9999.999 to 9999.999 Kg/m3		
13-5-Brix Cal. Gain	166	Uint-16bit	R/W	0.0001 to 6.5535		
13-6-Brix Cal. Offset	167	Int-16bit	R/W	-270.00 to 270.00 Brix		
13-7-Empty Pipe Det.Enable	23.0	Bit	R/W	0= EPD Disable 1= EPD Enable		
13-8-Empty Pipe Det.Freq.	18	Uint-16bit	R/W	0 to 9999		
13-9-ADC Damping(mA,Totalizers)	21	Uint-16bit	R/W	1 to 500 Cycles		
13-A-ADC Gamma (mA,Totalizers)	6	Uint-16bit	R/W	0.1 to 99.9 %		

14-Factory Setting					
Parameter Name	Modbus Address	Format	Туре	Range	
14-1-Pickup Setpoint	137	Uint-16bit	R	mV	
14-2-Pickup Low Limit	454	Uint-32bit	R	mV	
14-3-Sweep Freq. Step	133	Uint-16bit	R	mHz	
14-4-Sweep Drive Amplitude	78	Uint-16bit	R		
14-5-IIR Filter Range	144	Uint-16bit	R	0 to 16	
14-1-Test Timer Value	608	Uint-32bit	R	0 to 9999.9	
12-2-Test Timer Setpoint	4	Uint-16bit	R	1 to 65000	
12-3-Test Timer Status	2.0	Bit	R	0= Test Counter Off 1= Test Counter ON	

HAR	HART Setting					
No.	Name	Modbus Address	Format	Туре	Range	
1	HART Baud Rate	32	Uint-16bit	R/W	O= 9600 bps 1= 19200 bps 2= 38400 bps 3= 57600 bps 4= 115200 bps 5= 230400 bps 6= 460800 bps 7= 921600 bps	
2	HART Data Mode	27	Uint-16bit	R/W	0= 8bit,Even,1Stop 1= 8bit,Even,2Stop 2= 8bit,Odd,1Stop 3= 8bit,Odd,2Stop 4= 8bit,None,1Stop 5= 8bit,None,2Stop	
3	HART Node Add.	28	Uint-16bit	R/W	O to 31	

Alarm List & Addresses(Bit)						
No.	Name	Address	Туре	Solution		
1	Digital Output 1 Pulse Overlap	227.0	R	Increase "3-6-D.O.1 Volume/Pulse" and/or Decrease "3-5- D.O.1 Pulse Width"		
2	Digital Output 2 Pulse Overlap	227.1	R	Increase "4-6-D.O.1 Volume/Pulse" and/or Decrease "4-5- D.O.1 Pulse Width"		
3	Micro Controller 2 Read Error	227.2	R			
4	Test Timer Timeout!!!	227.3	R	Call to Control System Co.		
5	Totalizer 1 Reset Inhibited	227.4	R	Change "7-1-Total1 Reset Mod"Parameter		
6	Totalizer 2 Reset Inhibited	227.5	R	Change "7-3-Total2 Reset Mod"Parameter		

ک پیوست B: تنظیم کنترلرهای PID پیوست

۷٫۱ تئوری PID

کنترل تناسبی- انتگرالی- مشتقی (PID) متداولترین کنترلری است که در حال حاضر در صنعت مورد استفاده قرار می گیرد. بخشی از محبوبیت کنترلرهای PID بدلیل عملکرد مناسب آنها در طیف وسیعی از شرایط کاری و بخش دیگری هم از سادگی عملکرد آن ناشی می شود که به مهندسان اجازه می دهد به سادگی با آنها کار کنند.

کنترلر PID همانطور که از نامش پیداست شامل سه ضریب تناسبی، انتگرالی و مشتق گیر میباشد که کاربر برای دستیابی به عملکرد بهینه میتواند آنها را تغییر دهد. در این مقاله سیستمهای حلقه بسته، تئوری کنترلر PID کلاسیک، روشهای مختلف تنظیم کنترلرهای PID، اثر تنظیم یک سیستم کنترل بر پاسخ سیستم حلقه بسته مورد بحث و بررسی قرار می گیرد.

۷،۲ اثر عملیات کنترلی انتگرالی و مشتقی بر عملکرد سیستم

دراین بخش به بررسی اثرات عمیات کنترلی انتگرالی و مشتقی بر عملکرد سیستم میپردازیم. در اینجا تنها سیستمهای ساده را در نظر میگیریم تا بتوان این اثرات را بر عملکرد سیستم به وضوح مشاهده کرد.

۷,۲,۱ عمل کنترل انتگرالی

در کنترل تناسبی که تابع تبدیل آن فاقد عامل انتگرالگیری است، در پاسخ به ورودی پلهای، خطای حالت ماندگار یا آفست وجود دارد. با منظور کردن عمل کنترل انتگرالی در کنترل کننده میتوان این افست را حذف نمود.

توجه کنید که کنترل انتگرالی، در عین حذف افست یا خطای حالت ماندگار، میتواند به پاسخ نوسانی با دامنهٔ کاهشی و حتی افزایشی منجر شود، که هر دو معمولاً نامطلوب هستند.

۷,۲,۲ عمل کنترل مشتقی

افزودن کنترل کنندهٔ مشتقی به کنترلر تناسبی روشی برای دستیابی به کنترلری با حساسیت زیاد است. یکی از مزایای کنترل کنندهٔ مشتقی این است که به آهنگ تغییر سیگنال خطا پاسخ میدهد و میتواند قبل از بزرگ شدن بیش از اندازهٔ خطا، اصلاح قابل توجهی بوجود آورد. پس کنترل کنندهٔ مشتقی خطا را پیش بینی کرده، عمل تصحیح زود هنگام را انجام میدهد و به این ترتیب بر پایداری سیستم میافزاید.

تنظیم کنترلرهای PID

اگر چه کنترل مشتقی اثر مستقیمی بر خطای حالت ماندگار ندارد، ولی با افزودن میرایی به سیستم اجازه میدهد بهرهٔ Kp بزرگتری انتخاب شود و این بهرهٔ بزرگتر دقت حالت ماندگار را بهتر میکند. چون کنترل مشتقی بر اساس آهنگ تغییر سیگنال خطا عمل میکند نه خود سیگنال خطا، هرگز به تنهایی به کار نمیرود. کنترل مشتقی همیشه همراه با کنترل تناسبی و یا کنترل تناسبی و یا کنترل تناسبی و یا کنترل می

$$u(t) = k_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right)$$
(1) (1) (1)

۷٫۳ روشهای تنظیم کنترلر PID

فرآیند تنظیم ضرایب بهینه برای I،P و D به منظور دستیابی به پاسخ ایدهآل از یک سیستم کنترل تنظیم کنترلر نامیده میشود. برای این کار روشهای مختلفی وجود دارد که در این مقاله سعی شده است روش آزمایش، خطا و روش زیگلر نیکولز توضیح داده شود.

۷,۳,۱ روش آزمایش-خطا

ضرایب کنترلر PID میتواند از طریق آزمایش و خطا بدست آید. زمانی که یک مهندس اثر ضرایب کنترلر را در پاسخ نهایی سیستم درک کرده باشد تنظیم کنترلر نسبتاً ساده میشود. در این روش ابتدا ضرایب I و D برابر صفر قرار داده میشود و ضریب تناسبی "P" به آرامی افزایش داده میشود تا خروجی سیستم شروع به نوسان کند. زمانی که ضریب تاسبی افزایش داده میشود، عملکرد سیستم سریعتر میشود ولی میبایست مراقب بود که سیستم ناپایدار نشود. زمانی که P طوری تعیین شد که پاسخ خواسته شده با سرعت عملکرد مورد نظر حاصل شد، ضریب انتگرالی I افزایش داده میشود تا نوسانها متوقف شود. جملهٔ انتگرالی خطای حالت ماندگار را کاهش میدهد ولی از طرف دیگر باعث افزایش میشود تا نوسانها متوقف شود. جملهٔ انتگرالی خطای حالت ماندگار را کاهش میدهد ولی از طرف دیگر باعث افزایش فراجهش (Overshoot) میشود. لازم به ذکر است که همیشه برای دستیابی به پاسخ سریع وجود مقداری فراجهش ضروری است. از جملهٔ انتگرالی برای دستیابی به حداقل خطای حالت ماندگار استفاده میشود. زمانی که ضرایب P و I سرعت رسیدن پاسخ خواسته شده با سرعت و دقت مورد نظر تنظیم شدند، ضریب مشتق گیر افزایش داده میشود تا و اجازه میدهد ضریب تناسبی برای دستیابی به حداقل خطای حالت ماندگار استفاده میشود. زمانی که ضرایب P و I مروری است. از جملهٔ انتگرالی برای دستیابی به حداقل خطای حالت ماندگار استفاده میشود. زمانی که ضرایب P و I مروری است. از جملهٔ انتگرالی درم به ذکر است که همیشه برای دستیابی به پاسخ سریع وجود مقداری فراجهش سرعت رسیدن پاسخ خواسته شده با سرعت و دقت مورد نظر تنظیم شدند، ضریب مشتق گیر افزایش داده میشود تا مروری است. از جملهٔ انتگرالی برای دستیابی به دولی نظیم شدند، ضریب مشتق گیر افزایش داده میشود تا مروری مید بین پی میشخان برای دستیابی به نوزایش یابد. افزایش ضریب مشتق گیر افزایش داده میشود تا ناخواسته بسیار حساس کند. برای جلوگیری از تاثیر نویزهای ناخواستهٔ حاصل از اندازه گیری متغیر کنترل بر مقدار جملهٔ مروری میشتی، در بسیاری از موارد جملهٔ میتق گیر را همراه با یک فیلتر به کار میبرند. در هر حال بیشتر اوقات، مهندسان نیازمند مصالحه بین یک مشخصه با مشخصهٔ دیگر به منظور دستیابی به موارد خواسته شده میباشد.

Gain Increase	Rise Time	OverShoot	Settling Time	Steady-State Error	
K _p	•		Small Change	▼	
Ki	•			Great Reduce	
K _d	Small Change	•	-	Small Change	
جدول 1) اثر تغییر ضرایب PID بر عملکرد سیستم کنترلی (در این جدول K _i =K _p /T i)					

در جدول (1) اثر هر یک از ضرایب کنترلر PID بر عملکرد سیستم نمایش داده شده است.

نمودارهای شکل (1) اثرات تغییر ضرایب را در پاسخ سیستم کنترلی نمایش میدهند.

۷,۳,۲ روش اول زیگلر-نیکولز

در این روش پاسخ دستگاه به ورودی پلهٔ واحد را به طور تجربی، به صورت نشان داده شده در شکل(2) می یابیم. در بسیاری از سیستمهای صنعتی (سیستمهایی که در تابع تبدیل آنها نه انتگرال گیر وجود دارد و نه قطبهای مزدوج مختلط غالب) پاسخ پله به صورت یک منحنی S شکل، همانند منحنی شکل(2) خواهد بود. اگر پاسخ به صورت منحنی S شکل نباشد، این روش را نمی توان به کار برد. این منحنی پاسخ پله را می توان به صورت تجربی و یا با شبیه سازی دستگاه به دست آورد.

تنظیم کنترلرهای PID

منحنی S شکل را می توان با دو پارامتر مشخص نمود، زمان تاخیر L و ثابت زمانی T. زمان تاخیر و ثابت زمانی با رسم خط مماس در نقطهٔ عطف منحنی S شکل، و یافتن محل برخورد آن با محور زمان و خط C(t)=K مطابق شکل(2) تعیین می شود. زیگلر و نیکولز پیشنهاد می کنند مقادیر Ti ،Kp و Ta بر اساس فرمول های جدول (2) انتخاب شوند.

T _d	Ti	Kp	نوع کنترل کننده		
0	∞	T/L	Р		
0	L/0.3	0.9T/L	PI		
0.5L	2L	1.2T/L	PID		
جدول2) تنظیم کنترلر PI ،P و PI با استفاده از روش اول تنظیم زیگلر- نیکولز					

۷,۳,۳ روش دوم زیگلر-نیکولز

روش دوم قواعد تنظیم زیگلر-نیکولز یک روش محبوب دیگر برای تنظیم کنترلرهای PID میباشد. این روش تقریباً شبیه به روش آزمایش-خطا میباشد که در آن ضرایب I و D برابر صفر قرار داده میشود و ضریب P به تدریج افزایش داده میشود تا اینکه سیستم شروع به نوسان نامیرا کند. زمانی که نوسان شروع شد ضریب بحرانی K_u و پریود نوسانها P_u اندازه گیری میشود. سپس ضرایب P_i I و D بر اساس موارد نشان داده شده در جدول (3) تنظیم میشوند.

Control	Р	Ti	Τ _d		
Р	0.5K _u	-	-		
PI	0.45K _u	P _u /1.2	-		
PID	0.6K _u	P _u /2	P _u /8		
جدول3) تنظیم کنترلر PI ،P و PID با استفاده از روش دوم تنظیم زیگلر- نیکولز					

روش تنظیم اتوماتیک Relay based یک روش ساده برای تنظیم کنترل کنندههای PID است که از سعی و خطا جلوگیری مینماید و امکان کارکرد سیستم را در مرزهای پایداری به حداقل میرساند.

 دشواریهای تنظیم: زمانی که شما در مورد تنظیم کنترلرهای PID توسط مهندسین کنترل صحبت می کنید، به قواعد زیگلر-نیکولز و روش نوسان نهایی میرسید. در این موقع است که مهندسین خواهند گفت: "بله، روش تنظیم زیگلر-نیکولز، ما از این روش استفاده کردیم و سیستم به طرز نا مشخصی شروع به نوسان کرد، استراتژی نامناسبی است. علاوه بر این وقتی هم که با این روش تنظیم انجام شد پاسخ سیستم به طور کلی نوسانی است."

با توجه به اینکه روش تنظیم زیگلر-نیکولز روش خسته کننده و در برخی از موارد خطرناک است و بیشتر اوقات نوسان سیستم با سرعت بسیار کمی میرا میشود، این سوال بوجود میآید که چرا این روش اغلب به عنوان تنها روشی شناخته میشود که مهندسین ابزار دقیق با آن آشنایی دارند، و یا اینکه آیا اصلا استفاده از این روش مزایای قطعی دارد یا خیر؟

در واقع روش تنظیم زیگلر-نیکولز که در آن Gain کنترلر به روش تجربی تعیین می گردد تا فقط سیستم را از حالت ناپایدار خارج نماید شکلی از تعیین مدل ریاضی سیستم به روش تجربی است. تمامی روشهای تنظیم شامل یک جزء شناسایی مدل میباشد، ولی روشهای محبوبتر آنهایی هستند که این بخش را با سادگی و دقت بیشتری تقریب بزند. مهندسان پس از سالیان متمادی استفاده از کنترلرهای PID به این فکر افتادند که یک روش خودکار برای بدست آوردن ضرایب کنترلر PID تدوین نمایند. این روش به Relay Feedback موسوم شده است و در بسیاری از تجهیزات مورد استفاده قرار می گیرد